
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.1, Issue1, pp-01-06 ISSN: 2249-6645

 www.ijmer.com 1 | P a g e

Armen Keshishian1, Hasan Rashidi2
1Computer science Dept, Qazvin Azad University

Iran, Tehran

2Hasan Rashidi, Qazvin Azad University
Iran, Tehran

Abstract— Lack of the management of software risks is one of the
main reasons of software project failure. In order to implement
proper risk management processes, it is necessary to evaluate
risks, based on the specified criteria. The process of the
assessment of risks is a time-consuming process in software
engineering. So Tools for automated the risks assessment is
needed. In this paper, a method for automatic evaluation of some
important measures of risk management is provided. Getting the
physical address of the project and analyzing line by line is how
this method works. In this analysis, the risks between classes and
the internal risks of any class discovered using some criteria.
These criteria that are used in this method are based on three-tier
architecture. Finally, proposed method, provide some quantities
which are represent the impact of the risks. For showing the
efficiency of this method, a tool named SPRA is implemented. At
the end of this paper, a comparison between two out puts is
represented, one output is based on the manual method and the
second one is the SPRA tools output. These results indicate that
the proposed automation method can increase the accuracy of the
assessment while it is optimizing the time and avoiding human
errors.

Keywords— Software risks, risk management, risk assessment
automation

I. INTRODUCTION
In recent years growing of the requirements in the

industries, leads to increasing the complexity of the software
and, in turn, it leads to amplification of the failure probability.
As the proper software can guarantee the success of an
industry, inefficient software can leads to the failure of the
industry then. The reasons that are leading the failure of the
software are called risk. Analyzing and assessment of risks can
help to reduce the failure of the projects. [1] – [3]

The first step for analyzing the risks is the determination of
the probability and the impact of the risk. The best way to
determine the impact of risks is quantitative measurement, if
the gathering of information from different resources was
available. The most common way is calculating the expected
monetary value. For the calculation of the EMV, the equation
number 1 is used, where the EMV is stand for Expected
Monetary Value. The Impact can also be calculated from the
maximum of impact which is shown in equation 2 where Pi
represented the probability of the maximum value. [4]

(1) EMV = Probability × Impact
(2) Impact = maxImpact × Pi
(3) EMV = Pe × Pi × maxImpact

Given the equations above, it’s possible to obtain the EMV

using equation 3, where Pe represented the probability of an
event. There is another parameter which is called Management
Reserve or MR in short. MR is summation of relative EMV’s
for all anticipated threats and the equation 4 is used to
calculate it. This parameter used to reduce the risks. [4]

(4) MR = ∑ (probability i × impact i)

When threats identified and classified, the answer of the
risks can be formulated and in that moment the Risk
management plan will be complete. Figure 1 shows the risk
management plan.

Using some metrics for quantitative measurement is one of

the most important methods in risk assessment. For that end,
some important metrics that are lead to success or failure of a
project should be gathered helping statistical information
collection. Then for measuring the risks, the metrics should be
calculated for any of the considered risks in the project. With
comparison of the obtained values from the project with the
values that are discovered in statistical method, the impact of
any of the risks could be calculated. [4]

Now it is possible to use the impact parameter according to
calculated impacts for each metric in equations 2, 3 and 4.
Using these impacts and equations made it possible to give a
value to each layer for assessment risks. With support of these
quantitative measurements, the risk management plan will be
so accurate and methodical. [4]

This paper introduces a new method that measures risk
metrics in any software projects. At the end, the impacts of
risks will be produced. For this goal, a tool that discovers all

Risk
Source

Risk
Event

impact EMV

Event
probability

Impact
probability

Stakeholders tolerant

Plan

Fig. 1: Risk management plan [4]

Software Products Risk Assessment (SPRA) Tool for
Determining Source Code Risks

International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.1, Issue1, pp-01-06 ISSN: 2249-6645

 www.ijmer.com 2 | P a g e

of the risks has been developed. With using this tool, all of the
impacts of the risks will be calculated.

There is different categorization for risks in various areas.
In one of these categories that represented by Hoodat and
Rashidi [7] risks have been divided into two different
classifications that are Internal and external risks. Internal
risks take place into an organization but externals occur out of
it. For external risks some issues are proposed such as the
market behavior, competitions, prices, widespread failure of
the product and etc. Internal risks are classified into three
different categories that are product, process and project.
Project risks concern the performance of the project. The
product risks include technical risks, pending faults and
possible shortcomings. The process risks could be the outcome
of product risks. It is important to determine the relations
among the risks on theses three categorize. [5]–[7]

In this paper one of the product risks is concerned that
appears on the source code of the software. For avoiding some
extra efforts, in the next section some similar works will be
reviewed and then the new method will be introduced. At the
end, the outputs of different models will be compared.

II. SIMILAR WORKS IN AUTOMATIC RISK ASSESSMENT
In this section some of the most important works that focus

on discovering source codes risks will be reviewed. These
efforts can be divided into two main approaches. These two
approaches will be exhibited with their advantages and
disadvantages.

A. DATRIX APPROACH
The name Datrix identifies a project, a set of tools and a

team of engineers within Bell Canada. This approach tries to
analysis the source code of the project. The aim of such an
analysis is to assess the maintainability of these software
products from a source code perspective. This model is based
on the concept of an ASG, which stands for Abstract Semantic
Graph. For generating this graph, the source code is parsed
and the Abstract Syntax Tree (AST) is produced. The AST is
then processed in order extract semantic information such as
identifier scope, variable type and etc. This information is
added to the AST as node attributes, edges or any other kind
of annotations, that results in ASG production. In order to
detect most risks, the ASG graph must be understandable. [8]

B. RISK ASSESSMENT USING SOURCE CODE APPROACH
For determining the risks, this approach divides the

process into two phases. The information that is extracted in
the first phase is generated using the automatic analysis of the
source code. This information called primary information.
Second phase results are called secondary information that are
emerged from documents and the developers. A tool in Java
language is developed to fetch the primary information using
the source code analysis. The emerged information of the
first phase then inserted into corresponding tables in database.
In next stage, after the tool task, the analysis of the risks is on

analyzers to write appropriate queries to get the required
information. [9]

Table 1 shows these two approaches advantages and
disadvantages.

TABLE 1
comparison between two approaches [8],[9]

Approach Properties Advantages Disadvantages
Datrix -using ASG

-generating
a graphical
structure

-reducing
reviewing
process
-representing a
tree schema
-the first
graphical
approach

-lack of the global view
- lack of the version
determining tool
-lack of representing the
sub graphs
-tight dependency
between the results and
the analyzers
-lack of some metrics for
risk assessment

The source
code
analysis
approach

-using
database
for storing
the data

-reducing
reviewing
process
-supporting the
querying on the
analyzed data

-high dependency
between the results and
the documents
-high dependency
between the results and
the analyzers
-lack of some metrics for
risk assessment

III. DISCOVERING PROJECT RISKS METHOD
This paper represents a new method which uses flexible

parsing [10] and source code analyzer [11]. After the
analyzing phase, the risky patterns are discovered using some
methods in resources [11, 12]. Then the impacts of the projects
risks would be calculated. At the end of the method, with
using resource [13] some documents will be generated.

The source code risks are categorized in 2 different classes:
 Intercommunicated class risks
 Single class risks

A. INTERCOMMUNICATED CLASS RISKS
For assessing the risks in a project it is necessary to

discover the communicated classes and exhibit the interaction
with numbers. Discovering and assigning these relations could
be helpful in predicting the propagation of the changes among
the classes of the project. These values can be used to
determine the percentage of the changes, according to the
variations percentage of the classes. This may be useful in
decision support system (DSS). The accessibility of these
percentages can assist managers to decide whether to accept or
reject the changes. In case of acceptance, the classes that will
change are determined. Two different kinds of dependencies
are considered for analyzing the changes:

 Hard Dependencies
 Soft Dependencies

In this article the hard dependencies are the inheritances
between two classes. These kinds of dependencies are more
important than the soft dependencies, because the most tightly

International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.1, Issue1, pp-01-06 ISSN: 2249-6645

 www.ijmer.com 3 | P a g e

relation is created between these two classes when a class
inherits from the other class. Therefore, the hard dependency
value is higher than the soft dependency. The dependency
value shows the propagation changes domain. In other words,
it shows the number of affected classes. For discovering the
hard dependencies in this article, the parent class is found
using code analyzing method and then an inheritance relation
is established among parent and the child classes.

The other kind of dependencies is soft dependency which
contains the call of other class methods and usage of public
members of the other classes. In this case a soft relation is
established between two dependent classes. For this aim, first
the public members of all classes are discovered and a list of
those members is generated. After that, all of the classes will
be analyzed with using the source code reviewing method. If
any of items of the list is found in the class body, then a soft
relation between two classes (member owner class and user
class) will be created.

Discovering both dependencies has O(n*m) time
complexity. First of all the whole codes are parsed, and the
public members are fetched from the source code and a list is
generated, this step has O(n) time complexity where n is the
number of total code lines. At the second step, the code will be
reviewed again and the generated list will be parsed
simultaneously for each line. So the total time complexity will
be O(n*m) where n is the number of code lines and m is the
summation of the public members and the number of all
classes.

B. SINGLE CLASS RISKS
As the inefficiency of a single class can threaten the whole

project, it is important to assess a class without considering
other classes and their relations. For automatic assessment of
this kind of risks, some of metrics have to be prepared. These
metrics have been gathered from previous articles. These
metrics are identified by some keywords. With linear parsing
and comparing each statement with these keywords is the
routine of this method. In this analyzing the usage percentage
of the keywords will be obtained. With these percents and
using some boundary values that are represented in other
articles, values which are the impacts of all risks will be
calculated.

The metrics that are used in this paper are derived from
resources [15], [16] and [17] where each one has its own
boundary values. These boundary values are obtained from the
statistically gathering data method. Every metric has its own
value which represents the risk impact. Comparing the
calculated value of each metric with the corresponding
statistical values could lead to new value retrieval which
represents the risk impact of that metric. Table 2 shows the
metrics and the boundary values and the scale of each one in
ten.

TABLE 2
some important metrics and the boundary values

Metric Name Boundary Value Ten Scale
1 Exception Handling

Structures
Less than 5% 8
5% to 8% 7
8% to 12% 5
More than 12% 1

2 The percent of using
comments

Less than 10% 6
10% to 15% 5
More than 15% 1

3 The percent of using
global variables

Less than 10% 5
10% to 20% 6
20% to 40% 7
More than 40% 10

4 Number of methods Less than 20 1
20 to 40 3
More than 40 5

5 The percent of using
standard objects

Less than 20% 5
20% to 40% 3
40% to 60% 5
More than 60% 3

IV. SOFTWARE PRODUCTS RISK ANALYSER TOOL
Software products risk analyzer or SPRA in short, is an

application that is developed to automatically discover risks.
The main goal of this tool is to avoid the analyzers from
reviewing massive source codes. This tool identifies the whole
risky patterns with given source codes then a document is
created with results of this identification. This document
includes all of the risky metrics of the three-tier architecture
projects with their impact values. The output of this
application can be generated in a short time without human
errors.

The SPRA is represented, according to section 2 and the
weaknesses of mentioned methods. This tool is developed by
C# programming language. With obtaining the physical
address of the project as an input, the parser starts the
analyzing with proposed method. The parser analyzes the
whole code in linear manner.

The parser creates a class object for any file that contains a
class. This object is a defined class and its properties are
specified based on the common characteristics between
classes. For example all of classes can inherit and they have
some methods, and etc. Fig. 2 shows the schema of class
object and its interaction with parent class.

International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.1, Issue1, pp-01-06 ISSN: 2249-6645

 www.ijmer.com 4 | P a g e

1-4- Automating of layer risks evaluation

In this section, the risks of the layers are discussed. The
purpose of using three-tier architecture is to apply the
advantages of modular software development. In this
architecture, any layer has its own duties; thus, there are some
risks which threaten the related layer and the threat doesn’t
scatter to the other layers. So it is much easier to concentrate
only on a layer risks instead of monitoring all risks of all
layers. The SPRA tool applies this advantage and some part of
it only deals with the risks of a layer.

A. Hard dependencies
There are lots of classes for any software which is

developed by Object Oriented model. These classes usually
have tight interconnections. One of the interconnections is
inheritance relation that can cause some risks. Requirement
changes or malfunctioning of a parent class could lead to the
propagation of changes among wide variety of classes. For this
reason, it is so vital to discover and monitor this kind of
connection among classes. Figure 3 shows the inheritance
between some classes and the propagation of changes in that
set.

At the beginning of class analysis, the parser identifies all

of classes in the product. In this process the modifier of classes
is determined. For this property a field with integer type has
been considered. Value zero exhibits the protected type and
value one shows the public type of the class modifier. With
using this value, the scale of the class could be determined.
The parent of classes is determined in parallel manner while
the parser checks the modifier type, and if the parent class is
one of the internal classes, then two classes will be connected
to each other. This connection would be as an inherited type.
There is a certain property for class object which is the parent
class. This property will be initialized with the parent class
object. Using this information could help to the prediction of
the required changes in other classes. Table 3 shows the
required fields for discovering the hard dependencies.

TABLE 3
required fields for discovering the hard dependencies

Field Name Type #
Modifier Int 1
ParentClass ClassObject 2
ChildrenList List<ClassObject> 3

B. Soft dependencies
Inheritance relations are not the only way in associating the

classes. There is another kind of dependencies which is called
soft dependency. For tracking this kind of connections, it has
to have some certain fields in class object. To this end the
UsedClasses field is considered as a list of class objects. For
tracking the usage of other class methods, another field is
considered as OtherClassesMethods. For used members,
OtherClassesVars field is intended. With using these fields,
the SPRA tool could track the propagation of changes of any
class through the connected classes. This has O(n) time
complexity. Table 4 shows the related fields in class object.

Class 3
Properties 3
Methods 3

Class 1

Properties 1
Methods 1

Class 4
Properties 4
Methods 4

Class 8

Properties 8
Methods 8

Class 9

Properties 9
Methods 9

Inherited

Inherited

Class 10

Properties 10
Methods 10

ClassObject

Properties:
 string ClassName
 string ClassLayerName
 int NumberOfMethods
 Order ClassOrder
 ClassObject ParentClass
 List<ClassObject> ChildrenClasses
 List<MethodObject> MethodList

ClassObject

Properties :
 string ClassName
 string ClassLayerName
 int NumberOfMethods
 Order ClassOrder
 ClassObject ParentClass
 List<ClassObject>

ChildrenClasses
 List<MethodObject> MethodList

Inheritance

Parent

Child

Fig. 2: the Risk Object and interaction with parent class
Fig. 3: the propagation of changes in inherited classes

International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.1, Issue1, pp-01-06 ISSN: 2249-6645

 www.ijmer.com 5 | P a g e

TABLE 4
related fields in class object

Field Name Type #
UsedClasses List<ClassObject> 1
OtherClassesMethods List<MethodObject> 2
OtherClassesVars List<Variable> 3

V. SPRA COMPONENTS
For a better understanding of SPAR operation, it is needed

to review its components. The core of this tool is based on
three classes. In the next section these classes will be
presented in details, after that a comparison between the SPRA
and the manual outputs will be made.

A. BOUNDARY CLASS
According to the similar researches, the lack of the risk

assessment is one of the main inadequacies. With using the
measured criteria, risk assessments can be reduce the
duplicated processes and even can help analyzers to manage
the risks in a better way. This facility is considered in SPRA
tool. SPRA uses the output of other researches in which the
data is gathered from very different projects. After the
comparison and value selection for any metric, the SPRA tool
creates a document and reports all of the risky parameters.
In SPRA tool a class is considered for maintaining the
boundary values. This class is a data structure that contains all
of the keywords and corresponding values. Having this class
and other components used in SPRA, makes it possible to
obtain the risks of any arbitrary set of class. Table 5 shows the
boundary values and some of the most important fields of this
class.

TABLE 5
The boundary values and some of the most important fields of this class

Values Field Type Field Name
8 int ExceptionUnder5
7 int Exception5to8
1 int ExceptionUpto12
6 int CommentUnder10
5 int Comment10To15
1 int NOMUnder20
3 int NOM20to40

B. AVERAGE CLASS
Average class is a static class which is used for

determining the average of the risks of any set of classes. This
arbitrary set could be a single class or all of certain layer
classes or any other combination of classes. With helping the
boundary value class, the average class calculates an average
value of the given classes risks impacts.

There are several methods defined in this class to make it
easy to get all type of risks. For example a method is
developed for determining the risks related to exception
handling. With helping the boundary values and using the
corresponding class, the impacts can be calculated. The

average class calculates an average of these values and the
result is stored in Risk Class.

C. RISK CLASS
For storing the assessed values, the risk class is introduced.

This class has several fields for storing the values that will be
used by managers and risk analyzers. To this end, this class
uses three other subclasses. These classes are ClassMetrics,
ProjectMetrics and LayerMetrics. In ClassMetrics some fields
are considered for storing the assessed risks of any class
object. The ProjectMetrics Class has the appropriate fields for
maintaining the impacts of project level risks. The
LayerMetrics class has some other fields for storing the
impacts of any Layer risks. Figure 4 shows this class fields.

D. THE COMPONENTS INTERACTION
For better understanding to how this method works, the

pseudo code 1 is represented. As pseudo code 1, at the first
phase of the tools execution all of the required classes are
added to AllClassesList object. After initializing this object a
Risk Class object is created. Then for each item on
AllClassesList the criteria of risks is calculated and the
corresponding field is initialized. This initialization is handled
by the Average class. The Average Class applies the boundary
value class. Furthermore, using boundary values for each
metric, the impact can be determined and stored in the
corresponding subclass. Finally, using the documenting
methods, a document is stored in the physical address of the
project. This document contains all of the information that can
be usefully in risk assessment and analyzing.

RiskClass

Properties:
 ClassMetrics
- ExceptionCtrlPresent
- CommentPresent
- GlobalVarsPresent
- NOM
- StandardObjPresent
 ProductMetrics
- LayerInterconnection
- Architecture
 LayerMetrics
- LayerArchitecture
- Class

Fig. 4: Risk Class Fields

International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.1, Issue1, pp-01-06 ISSN: 2249-6645

 www.ijmer.com 6 | P a g e

VI. COMPARISON BETWEEN SPRA AND OTHER METHODS
For measuring the performance of the SPRA tool, some

sample projects of Kaloob Engineering Corporation is
selected. The Kaloob Corporation is a software development
company that develops GIS based systems. For comparison,
three different methods are considered. First method is the
SPRA method output and the other one is based on the old
methods that were mentioned, and the last one is the manual
method that is implemented by the developers and managers.
The old methods are obtained from references [11] and [12].
The SPRA metrics and boundary values are obtained from
reference [10] and the manual metrics are utilized by
managers and the risk analyzers. These comparisons are made
using five different projects. Projects number 1, 2 and 3 are
web-based and the others are windows-based. The best
method is the one that its results are closer to the manual
outputs. Figure 1 shows the result.

According to this Diagram, the outputs of the SPRA tool
are accurate enough to be used in real environments. This
means that the SPRA could avoid the human errors while it

saves the assessment time. It can also be replaced with the
manual assessing methods.

VII. CONCLUSION
In this article a method is introduced that can estimate the

risks of software projects. The SPRA tool is developed based
on the represented method to automate the risk assessments
processes. The outputs show, SPRA could be replaced with
the time-consuming manual methods. The output diagram
shows that the type of the project could play an important role
in risk assessment; thus, gathering the boundary values of
impacts based on the project type could be one of the future
researches.

REFERENCES
[1] B. Xinlong, “Software Engineering Failures: A Survey”. Oregon

State: University Corvallis, School of EECS, 2001.
[2] B. Lawhorn. (2009) Software Project Failure Costs Billions.

Better Estimation & Planning Can Help. [Online].
http://www.standish.com,

[3] W. Humphrey, “Five reasons why software projects fail”.
Addison-Wesley, 2002.

[4] J. Kontio, “The riskit method for software risk management”,
Institute for Advanced Computer Studies and Department of
Computer science, University of Maryland, 1999.

[5] R. Pressman, Software Engineering: A Practitioner's Approach. 7th
ed., McGraw-Hill Science Engineering, 2009.

[6] H. Ronald, P. Haimes and Y. Yacov, “Software Risk
Management”. University of Virginia: Software Engineering
Institute, Center for Risk Management of Engineering, 1996.

[7] H. Hoodat, H. Rashidi. “Classification and Analysis of Risks in
Software Engineering” . World Academy of Science, Engineering
and Technology 56, 2009.

[8] Lapierre, Sebastien, Lague, Bruno and Leduc, Charles. “Datrix
Source Code Model and its Interchange Format: Lessons Learned
and Considerations for Future Work. Montreal”, Canada: Bell
Canada, Quality Engineering and Research, 2002.

[9] van Deursen, Arie and Kuipers, Tobias. “Source-Based Software
Risk Assessment”. Netherlands: CWI and Delft University of
Technology the Netherlands, 2004.

[10] G. Knapen, B. Laguë, M. Dagenais,E. Merlo, “Parsing C++
Despite Missing Declarations”, International Workshop on
Program Comprehension, May 99, Pittsburgh, PA, USA.

[11] M. Kuhnemann, T. Rauber, G. Runger, “A source code analyzer
for performance prediction”, Parallel and Distributed Processing
Symposium, 18th International, 2004.

[12] Li, Z. Lu, S. Myagmar, S. Zhou, “finding copy-paste and related
bugs in large-scale software code”, Software Engineering, IEEE
Transactions on, March 2006.

[13] Victor R. Basili and Salwa K. Abd-El-Hafiz, “A method for
documenting code components”, Journal of Systems and Software,
Volume 34, Issue 2, August 1996, Pages 89-104.

[14] H. Kozioleka and F. Brosch, “Parameter Dependencies for
Component Reliability Specifications”, Sixth International
Workshop on Formal Engineering approaches to Software
Components and Architectures, FESCA, 2009.

[15] A. Keshishian, H. Rashidi, “Assessing several Metrics for risk
management in software”, Sixteenth conference of Computer
science, Sharif University of Tehran., 2010.

[16] A. Stale, “Risk-based testing: Risk analysis fundamentals and
metrics for software testing including a financial application case
study”, Systems and Software, pp. 287-295. 2000.

[17] L. Rosenberg, H. Stapko and G. Albert. “Risk-based Object
Oriented Testing”, SATC NASA, Unisys, 2000.

List<ClassObject> AllClassesList = init ializing the favorite set of classes;

RiskClass riskClass = new RiskClass();

foreach (ClassObject cls in AllClassesList)
{
 riskClass.ClassMetric.ExeptionCtrlPresent =
 Average.ExeptionCtrlPresent(AllClassesList);
 riskClass.ClassMetric.CommentPresent =
 Average.CommentPresent(AllClassesList);
 riskClass.ClassMetric.GlobalVarPresent =
 Average.GlobalVarPresent(AllClassesList);
 riskClass.ClassMetric.NOM = Average.NOM(AllClassesList);
 riskClass.ClassMetric.StandardObjPresent =
 Average.StandardObjPresent(AllClassesList);
 riskClass.ProductMetric.LayerInterconnection =
 Average.LayerInterConnection(AllClassList);
 riskClass.LayerMetrics.LayerArchitecture =
 Average.LayerArchitecture(AllClassList);
 riskClass.LayerMetrics.Class = Average.Class(AllClassList);

}

Pseudo code 1: the interaction between components

Fig. 5: some different methods outputs

International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol.1, Issue1, pp-01-06 ISSN: 2249-6645

 www.ijmer.com 7 | P a g e

